
k,  k s b ,  k ,b  = thermal conductivity 
k s b  for soybean oil meal 
k,b for carbon black 

a = thermal diffusivity 

r = radius of cylinder 
t = time 

L, L1, L, = length of path for heat transfer 

T = temperature at geometric center of finite cylinder 
except a s  noted 

To = initial temperature of cylinder 
TI = surface temperature of cylinder at time 8 (forcing 

temperature) 
u = 6'theoretical" temperature, Tl - T / T I  - To 
p = density 
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Thermal Conductivity of Some Organic Liquids 
High Temperature Measurements 

0. B. CECIL, W. E. KOERNER, AND R. H. MUNCH 
Organic Chemicals Division, Monsanto Chemical Co., St. Louis 4, Mo. 

A lthough thermal conductivity va lues  a r e  becoming more 
numerous i n  t h e  l i terature ,  they represent for t h e  most part  
va lues  determined a t  relatively low temperatures-i.e., 
below 100" C. Engineers  desiring to  u s e  t h e s e  data  for 
high temperature problems must extrapolate  low temperature 
va lues  to  t h e  desired temperature. In  many cases, only one 
va lue  e x i s t s  and t h i s  must b e  used for a l l  calculat ions.  
Such extrapolat ions a r e  obviously questionable.  

T h i s  report d e a l s  with t h e  extension of a technique for 
determining abso lu te  va lues  of thermal conductivity (1) t o  
temperatures a s  high a s  200" to  250' C. T h i s  work does  
not represent a l imit  for thermal conductivity measurements 
but serves t o  i l l u s t r a t e  how va lues  a t  higher temperatures 
can b e  determined. 

EXPERIMENTAL 
T h e  method used  [descr ibed in detai l  e lsewhere (I)] is a 

highly refined modification of t h e  hot-wire technique. T h e  
thermal conductivity cell proper employs a four-lead ar- 
rangement analogous t o  a four-lead platinum res i s t ance  
thermometer, thereby eliminating end effects.  A l l  con- 
s t a n t s  necessa ry  for thermal conductivity measurements  
a r e  determined from t h e  dimensions of t h e  cell. T h e  
determined thermal conductivity va lues  a r e  thus  absolute.  

Of prime importance i n  t h e  s u c c e s s  of t h i s  method is t h e  
constancy of t h e  temperature of t h e  thermostated bath. In 
t h e  previous low temperature work, s imple on-off control of 
t h e  thermostated bath provided a temperature which w a s  
constant  t o  within about k 0.003" C. Duplicate  measure- 
ments a t  30' C. had shown a n  average deviation f rom the  
mean of *0.3%, and th i s  deviation had increased to  +0.5% 
a t  80' C. T h e s e  da t a  demonstrate one  of t h e  inherent 
f au l t s  of on-off control-namely, that  progressively l e s s  
sat isfactory performance is obtained a s  t h e  desired operat- 
ing temperature differs  more widely from ambient tempera- 
ture. For t h i s  reason other t ypes  of controls  and thermo- 
s ta t ing were considered. T h e  final cho ice  for t h e  high 

Conden iser 
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Figure 1. Thermal conductivity cell  and 
condensing vapor thermostat 

A. Sil icone o i l  reservoir 
B .  Condensing vapor iacket 
C. 1%-inch thick magnesia insulation 
D. 1-liter pot heated with 

E. Transite top and cell  holder 
F. Gloss wool insulation 

spheri ea I mantle 
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Figure 2. Thermal conductivity of tricreryl phosphote 

temperature work w a s  a condensing vapor bath. It w a s  
compact i n  s i z e  and relat ively s imple t o  design and con- 
struct. T h e  upper temperature limit for t h i s  type  of thermal 
conductivity measurement i s  governed by the  avai labi l i ty  of 
a su i tab le  inert  nonvolat i le  bath fluid which re ta ins  high 
e lec t r ica l  res i s t iv i ty  a t  the  desired operat ing temperature. 

T h e  thermostat assembly (Figure 1) c o n s i s t s  of a vapor 
jacke t ,  B, constructed from 60 - and 80-mm. tubing. T h e  
jacket ,  45 c m .  in  height and insu la ted  with 1.25 i n c h e s  of 
magnesia p ipe  lagging, C, w a s  connected at t h e  bottom to  
a 1-li ter f lask ,  D, heated  with a spher ica l  mantle. At t h e  
top of t h e  jacke t  a condenser  (air or water depending on the  
boiling point of t h e  l iquid used)  w a s  at tached.  T h e  la rge  
reservoir ,  A ,  w a s  fi l led with s i l i cone  o i l  and hea ted  by the  
condensing vapors. T h e  thermal conductivity cell w a s  
immersed in  reservoir  A, so that the  top of t h e  18-cm. 
filling arm was  s l ight ly  above the  oil level.  T h e  cell 
holder w a s  connected to  the  T r a n s i t e  cover, E ,  on compart- 
ment A .  T h e  cover which also held a mercury-in-glass 
thermometer and a differential thermometer w a s  insu la ted  
with 3 i n c h e s  of g l a s s  wool batt ing,  F. 

T h e  s i l icone  oil  served as a buffer to reduce e f fec ts  of 
temperature var ia t ions  of the  condensing vapors. T h e  
outlet of t h e  condenser  w a s  connected to a Car tes ian  
manostat. A check of temperature uniformity i n  the  bath 
made with a platinum res i s tance  thermometer showed 
var ia t ions of k 0.005' C. Poin t  to point temperature dif- 
fe rences  were about t h e  same. 

Liquids  used  for the  vapor source have  included water, 
2-methylpentanol, and primary decyl  a lcohol  (Union Carbide 
Chemica ls  Co.). 

External l e a d s  to  t h e  thermal conduct ivi ty  cell were 
originally sof t -soldered with a solder  melting a t  180 '  to  
190' C. For  t h e  temperatures  to which t h e  authors  pro- 
posed to  submit t h e  ce l l ,  t h e  l e a d s  were resoldered with a 
high melting sof t -solder  (Erosin Multicore Comsol solder  
melting a t  290" C., Multicore S a l e s  Corp., 164 Duane St., 
New York 13, N. Y . ) .  Other than t h e  lengthening of t h e  
fi l l ing arm to  18 cm., no modifications of the ce l l  were 
necessary .  

DISCUSS1 ON 
Thermal conduct ivi ty  va lues  have  been determined for a 

series of l iquids  of  known or proposed industr ia l  use ,  many 
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Figure 3. Thermal conductivity o f  di(2-ethylhexyl) rebocote 

Table I. Thermol Conductivity o f  Biphenyl and Some Chlorinoted 
ond Alkylated Derivotiver 

k X lo', 
Cal./Cm. Oc. Temp. & / d t  x I@, 

Compound Sec. Range, OC. CaL/Cm OC. 

Aroclor' 1242 23.9 30-217 0 
Aroclor 1248 23.5 30-217 0 
Aroclor 1254 22.5 30-2 17 0 
Biphenyl 31.6 98-217 0 
Monoisopropyl- 

biphenyl 28.8 98-2 17 0 
Diis  opropyl- 

b ip he ny 1 28.3 98-217 0.0034 
(150 "C.) 

aRegistered trade-mark of Monsanto Chemical Co. 

of which were previously reported for a temperature range 
of 30" t o  80°C .  (1). Thermal  conductivity-temperature 
re la t ionships  for the  l iqu ids  over a range of temperatures 
up to  217" C. a r e  given i n  T a b l e  I and Figures  2 through 6. 
T h e  average  per cent  deviation of dupl ica te  measurements  
for each  determination is + 0.4%. T h i s  is sl ight ly  greater  
variation than w a s  observed in  t h e  authors '  lower tempera- 
ture  work and probably re f lec ts  t h e  sl ight difference in  
thermostat performance. 

T h e  reliabil i ty of t h e  method as appl ied to  low tempera- 
tu re  work h a s  been demonstrated (1). T h e  est imated accu- 
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Figure 4. Thermal conductivity o f  tetro(2-ethyihexyl) si l icate 
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Figure 5. Thermal conductivity of OS-45 
(Monsonto Chemical Co.) 
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Figure 6. Thermal conductivity of Dowtherm A 
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racy of t h e  low temperature work w a s  within + 2%. T h e  
reliabil i ty of t h e  present  work can  only b e  inferred, s i n c e  
data  for comparison a r e  limited. 

T h e  smooth cu rves  which can b e  drawn through t h e  low 
and high temperature data  can b e  taken a s  evidence that 
t he  new thermostat  introduced no unsuspected b i a s  i n  t h e  
high temperature data,  A review of t h e  b a s i c  pr inciples  of 
t h e  hot-wire technique h a s  revealed no reason for expect ing 
progressive deviat ions from true va lues  a t  higher tempera- 
tures ,  except  perhaps from convection. R e s u l t s  presented 
ear l ier  (I) indicated no convection, even with materials as 
fluid as  chloroform. A s  t h e  apparatus  u s e d  in  the present  
work w a s  t h e  same, t h e  factor which would have  t h e  most 
significant contribution to  convection would b e  viscosi ty .  
At t h e  highest  temperatures used,  t h e  v i scos i ty  of t h e  most 
f luid compound considered only approached that of chloro- 
form. Thus ,  there  appea r s  to  b e  no c a u s e  for believing m a t  
convection w a s  a factor  i n  t h e  present  measurements.  

Biphenyl and i t s  chlorinated and alkylated der ivat ives  
show very l i t t l e  change  i n  thermal conductivity with in- 
c r eas ing  temperature (see T a b l e  I). Phosphate ,  carboxylate,  
and s i l i c a t e  e s t t r s  (see F igures  2 through 5 )  a l l  show a 
s teady dec rease  i n  thermal conductivity with increasing 
temperature. 

A similar dec rease  is observed with Dowtherm A (Dow 
Chemical Co.) (Figure 6), considering t h e  experimental  
data  determined. i n  t h i s  work t o  complement t h e  work of 
Woolf and Sibbitt  (3). 

Avai lable  da t a  on densi ty  and viscosi ty  var ia t ions with 

Heats of Solution of Polyindene 

JACK VANDERRYN AND A. C. ZETTLEMOYER 
Lehigh University, Bethlehem, Pa. 

T h e  physical-chemical behavior of high polymer-solvent 
sys t ems  h a s  received a great dea l  of attention i n  recent 
years.  On t h e  other hand, t he  behavior of low molecular 
weight polymer solut ions h a s  not received much at tent ion in  
sp i t e  of their  commercial importance. T h e  present  s tudy  w a s  
undertaken to invest igate  t h e  nature of t h e  interaction of a 
low molecular weight polyindene type of polymer with sol- 
ven t s  or plast ic izers .  Solubili ty measurements of t h i s  poly- 
mer have  been reported elsewhere (IO). P r e c i s e  measure- 
ments  of t h e  heat  of solution of polyindene a r e  reported 
here  and form t h e  b a s i s  for a thermodynamic s tudy of 
polyindene-solvent systems.  

T h e  usual  expression for t h e  energy of mixing of non- 
electrolytes  i s  given by the  equation 

AJP = V,B V , ( l -  V,)  (1) 

where V ,  is t h e  volume of solution in  cub ic  centimeters,  
V ,  i s  t h e  volume fraction of polymer, and B is given by t h e  
expression: 

E = (SI - S,)' (2) 

temperature fa i led to  show correlations which would have 
predicted t h i s  difference i n  behavior. Sakiadis  and Coa te s  
(2) predict  t ha t  posi t ive,  negative,  and zero temperature 
coeff ic ients  of thermal conductivity a re  possible ,  but  
sufficient data  on t h e  heat capaci ty ,  velocity of sound, and 
intermolecular spacing in  t h e  l iquid s t a t e  were not avail-  
ab l e  for t he  present  compounds to  permit u s e  of their  
theoretical  equation, T h e  equation of Sakiadis  and Coa te s  
predicts  a l inear  variation of thermal conductivity with 
temperature. T h e  curved l i n e s  which were obtained over 
wide temperature ranges,  particularly with di-2-ethylhexyl 
sebacate ,  point up t h e  need for modification of their  treat- 
ment to  explain t h e s e  resul ts .  

T h e  temperature coefficient data  for Aroclor 1248 and 
Dowtherm A should b e  useful i n  t h e  design of heat  ex- 
changers  uti l izing t h e s e  important heat transfer f luids.  

CONCLUSIONS 
T h e  s u c c e s s  of t h i s  present work has  shown that  thermal 

conductivity va lues  can  b e  eas i ly  measured a t  high tem- 
peratures.  I f  su i t ab le  l iquids  for t he  vapor bath and silver- 
soldered or spot-welded l e a d s  a re  used,  t he  method dis-  
cussed  should b e  appl icable  at  higher temperatures.  
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where SI and S, a re  t h e  solubili ty parameters of solvent  and 
polymer, respectively.  T h e  volume change on mixing may 
be considered to  b e  negligible a t  low concentrations,  so  
that  t h e  hea t  of mixing is equal to  the  energy of mixing. 
According to  Equation 1 a plot of h E M / V m  vs.  V,(1 - V,) 
should give a s t ra ight  l ine with s lope  E .  Since  B is a 
squared term, i t  must be posi t ive and thus  th i s  theory pre- 
d i c t s  that  t he  hea t  of mixing of two nonelectrolytes must b e  
endothermic. However, where spec i f i c  interact ions occur,  
the experimental  value of B is not realized by Equation 2 
but becomes more complex and often negative.  Equation 1 
may, however, s t i l l  b e  applicable.  

E XP E RI M ENTAL 
Materials. Polymer. T h e  polymer used in  t h i s  s tudy w a s  

a coumarone indene resin manufactured by  the  Pennsylvania  
Industrial  Chemical Corp. Previous work in  th i s  laboratory 
on t h e  molecular weight distribution, viscosi ty ,  and solu- 
bil i ty of t h i s  res in  (5, 6, I O )  has been reported. [ T h i s  resin 
corresponds to  P i e s k i ' s  (5) Res in  I1 and to  Vanderryn's (IO) 
Res in  IV.] T h e  resin w a s  fractionated into four f ract ions 
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